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Abstract 

Theory applying to difference Fourier syntheses from 
fiber diffraction data is developed, including the 
calculation of expected peak heights and noise levels. 
The signal-to-noise ratio in fiber diffraction difference 
maps is much lower than in crystallography, because 
of the multi-dimensional nature of fiber diffraction 
data, but it is shown by means of examples from 
tobacco mosaic virus that high-order difference syn- 
theses, for example using coefficients analogous to 
crystallographic 6Fobs-5Fca~c, can clearly reveal 
differences between an observed structure and a 
model. 'Omit' maps, calculated from models by omit- 
ting a region under particular scrutiny, are of limited 
use in fiber diffraction, but maps calculated from 
hybrid coefficients derived from both full and partial 
models have some applications. 

Introduction 

Difference syntheses have been widely used in both 
protein and small-molecule crystallography to deter- 

*Present address: ERATO, 5-9-5 Tokodai, Toyosato, Tsukuba 
300-26, Japan. 

0108-7673/87/040533-07501.50 

mine structures related to already known structures, 
and as part of refinement procedures (Blundell & 
Johnson, 1976; Glusker & Trueblood, 1985). 
Although they have fohnd some use in fiber diffrac- 
tion [a number of references are given by Mandelkow, 
Stubbs & Warren (1981)], this use has until now been 
limited by the difficulties peculiar to fiber diffraction 
which arise from the cylindrical averaging of fiber 
diffraction patterns. Difference Fourier maps calcu- 
lated from fiber diffraction data by direct analogy 
with crystallographic difference maps tend to have 
high noise levels and to be biased toward the known 
or model structure, as will be shown below. In favor- 
able cases, modification of the model structure has 
enabled interpretable maps to be calculated (Man- 
delkow, Stubbs & Warren, 1981), but no systematic 
procedure has been available to deal with the general 
case. 

In this paper, we develop the theory of fiber diffrac- 
tion difference Fourier syntheses, and illustrate the 
method with examples that use simulated data sets, 
calculated from an atomic model of tobacco mosaic 
virus (TMV). We also present several alternative, 
semi-empirical syntheses, that have proven effective 
in handling real data. 

(~ 1987 International Union of Crystallography 
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Theory 
In a fiber diffraction experiment, the diffracted 
intensity at reciprocal-space radius R on layer line l 
is 

I(R, I)=Y, G., t(R)G*j(R) (1) 
f l  

(Waser, 1955; Franklin & Klug, 1955), where n is the 
order of the Bessel functions J, that contribute to the 
complex Fourier-Bessel structure factor G (Klug, 
Crick & Wyckoff, 1958). For a helical structure, n is 
restricted by the selection rule l = tn + urn, where m 
is an integer and there are u subunits in t turns of 
the helix. The number of significant terms contribut- 
ing to the intensity in (1), denoted here by N, depends 
on the symmetry and dimensions of the diffracting 
particle, and on the value of (R, l). For example, for 
TMV at 2.9,~ resolution, N can be as much as 8. 
Equation (1) can be compared with the crystallo- 
graphic equation 

I(h, k, l)= * F hklF hkl. 

If each G is known, an electron density map may 
be obtained from the relationships 

o o  OO 

p(r ,~p,z)=(1/c)  ~ ~. g.,,(r) 
l = - - o o  n = - - o o  

x exp [i(n~o -2"n'lz/c)] (2) 

and 

g,./(r) = S G,,.t(R)J,,(2"n'Rr)2.rrR dR (3) 
0 

where p is electron density; r, ~o and z are cylindrical 
coordinates in real space; and c is the repeat distance 
in the diffracting structure. The Fourier-Bessel trans- 
form represented by (2) and (3) is analogous to the 
Fourier transform of the F terms in crystallography. 
The problem of determining the values of the G terms, 
the phase problem for fiber diffraction, has been 
addressed in earlier papers (Stubbs & Diamond, 1975; 
Stubbs & Makowski, 1982; Namba & Stubbs, 1985). 

It is useful to define a 2N-dimensional vector fa, 
whose components are the components of the N 
significant G terms contributing to a particular 
intensity I(R,  l) in (1). Then (2) and (3) can be written 

p = TFB( ) 

where TFB is the Fourier-Bessel transform. The 
difference in electron density between the unknown 
structure and a known or model structure (denoted 
by the subscript 0) is 

Ap = 

This is a multi-dimensional analog of the two- 
dimensional case found in crystallography, where, if 
TF represents a Fourier transform, 

/ ip = T (F- F0). 

/i F = F -  Fo is not available experimentally, but if the 
known and unknown structures are believed to be 
similar, it is customary to use instead a vector having 
the phase of Fo and magni tude/ iF = F -  Fo. For small 
/iF, this vector approximates to FIp ,  the component 
o f / i F  in phase with Fo (Fig. 1). 

Peak heights 

Difference Fourier syntheses have been shown to 
contain electron density peaks which, when AF is 
small compared with F (that is, when the unknown 
part of the structure is small), approach half their 
true height (Luzzati, 1953). Henderson & Moffat 
(1971) give a simplified derivation of this height, 
pointing out that the contribution of F,v in the direc- 
tion o f / i F  i s / i F  cos 2 0, where 0 is the angle between 
F,p and / iF ,  and that since AF is not correlated with 
Fo, the mean contribution to the electron density is 
weighted by (cos 2 0)= I. The phase triangle in Fig. 1 
can equally well be constructed from (~o, f~ and Aft, 
and although it is then embedded in hyperspace, it 
is still two-dimensional. However, in 2N-dimensional 
space, (cos 2 0)= 1/2N (see Appendix*), so although 
the arguments given above still apply, in the absence 
of noise the peaks in a difference Fourier-Bessel 
synthesis from fiber diffraction data are expected to 
have 1/2N times their true heights, or 1 / N  times the 
heights of comparable peaks in a crystallographic 
difference Fourier map. 

Noise levels 

In order to determine the mean square error in 
electron density inherent in the difference Fourier- 
Bessel method, we will follow the crystallographic 
approach of Henderson & Moffat (1971) and Blow 
& Crick (1959), generalized to 2N dimensions. This 

* The Appendix proving this result has been deposited with the 
British Library Document Supply Centre as Supplementary Publi- 
cation No. SUP 43621 (3 pp.). Copies may be obtained through 
The Executive Secretary, International Union of Crystallography, 
5 Abbey Square, Chester CHI 2HU, England. 

P 

I 
Fig. 1. Structure factors from a known structure, Fo, a similar but 

otherwise unknown structure, F, and thier difference, /iF. F w 
and Fop are the in-phase and out-of-phase components of AF. 
This phase triangle describes equally well the multi-dimensional 
vectors ~o, ~ and A~. 
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is possible, as shown below, because of the equality 
{F 2) = {~2). We will consider only those errors inher- 
ent in the method, and not errors of intensity measure- 
ment or errors in the model structure. Because A(~ is 
not correlated with (~, its 2 N  orthogonal components 
have equal expectation values, as do the two 
orthogonal components of A F. However, whereas in 
the two-dimensional case there is only one unknown 
component (Foe), in 2 N  dimensions 2 N  - 1 unknown 
components contribute to the error in the electron 
density. Thus, as we will show in this section, the 
mean square error inherent in difference Fourier- 
Bessel syntheses is 2 N - 1  times as great as in 
difference Fourier syntheses. 

The mean square error in a difference electron 
density map is 

( a a p  =) = (2 /V =) E IAAFI 2 

where AAF is the error in the estimate of AF, i.e. Foe. 
F~p and Foe are uncorrelated components of AF, so 
Y. F~p = Y. F2e, and for small values of AF, Fw ~- AF, 
SO 

(aap 2) = ( 2 / v  2 AF 

In fiber diffraction, AF is not directly available, and 
the difference synthesis is based on cg_ ~o. Neverthe- 
less, we can estimate ~ ]AAF] 2, using the relationship 

F =  Y. Gjexp in(q, + 7r/2) 
J 

(Klug, Crick & Wyckoff, 1958). qJ is the azimuthal 
coordinate in reciprocal space. If Gj exp in(tp + 
rr/2) = Aj + iBj, then 

F 2 = Y~ A~ + Y. B 2 + ~ (AjAk + BjBk) 
j j j ,k 

and if we sum over all reciprocal space, with the 
uncorrelated cross terms dropping out, 

~ F 2 = ~ [ ~ ( A ~ . + B 2 ) ] = ~  c~2. (4) 

Now 

(AAp 2) = (2 /V 2) • laa l = ( 2 / v  2) 2 

ArC has 2 N  components, all having equal expectation 
values. One of those components is (¢w, while the 
sum of the remaining 2 N - 1  components, AA~, is 
(~oP, so 2 ~ 2 e = ( 2 N - 1 )  Z ~ 2 P = ( 2 N - l )  2 A~2, 
where A ~ =  ~ -  ~0. Therefore 

<aa0 2) = [ 2 ( 2 U -  1 ) /Vq Y a 2; 

so, from (4), 

(AAp2)=[2(2N - 1)/V u] E AF2. 

This is the expression for the mean square noise 
level inherent in the difference Fourier method in 
fiber diffraction. The noise level is higher than the 
level in crystallography by a factor of ( 2 N - 1 )  1/2 

Application to simulated data 

We have applied the theory described above to simu- 
lated, error-free data. These data were used in prefer- 
ence to real data in order to examine specifically 
limitations imposed by the noise inherent in the 
method. Practical applications using real data are 
considered below. 

A set of intensity data was generated from the 
atomic coordinates found for TMV (Namba & Stubbs, 
1985, 1986). These were treated as 'observed' data. 
The coordinates were perturbed in various regions 
using the program FRODO (Jones, 1982) in conjunc- 
tion with an Evans and Sutherland PS300 computer 
graphics system, in order to generate numerous sets 
of 'calculated' data. Similar results were obtained 
from all of these sets. Examples from two are 
described here: one in which only the side chain of 
Arg 112 was perturbed, and one in which the entire 
structure of residues 64-67 was perturbed. 

Difference maps 

In crystallography, the simplest form of difference 
map is calculated from coefficients F -  Fo and phases 
taken from F0. These maps ideally represent ½Ap, 
where the true electron density p is equal to po+ Ap, 
and Po is the electron density in the model structure. 
Coefficients F with phases from Fo lead to electron 
densities Po+½Ap; thus, the widely used synthesis 
with coefficients 2F - Fo is intended to calculate po+ 
½Ap +½Ap = p. In practice, the unknown part of the 
structure (which includes errors in the model struc- 
ture) may not be negligible, and there will be errors 
in the structure amplitudes, so the coefficient of Ap 
may be less than ½ (Luzzati, 1953; Henderson & 
Moffat, 1971). In order to allow for this effect, higher- 
order difference Fourier maps with coefficients such 
as 3 F - 2 F o  have sometimes been calculated (e.g. 
Deisenhofer & Steigemann, 1975; Artymiuk & Blake, 
1981). 

From the theory developed above, it is evident that 
in fiber diffraction simple difference maps will be 
images of 1 / 2 N  times the true difference density, 
where N is some average value of the number of 
overlapping terms contributing to the diffracted 
intensities in (1). In practice, these images may be 
weaker because of errors in the intensities and in the 
model structure. In order to obtain the best possible 
representation of p, a difference Fourier-Bessel syn- 
thesis should be calculated with coefficients n~d- 
(n - 1) ~30, where n is a number that varies across the 
data set, being twice the number of overlapping terms 
at each data point, n will generally be significantly 
larger than is usual in crystallography. In Fig. 2(b) 
we present such a synthesis for the model perturbation 
at residues 64-67. It is evident that such syntheses 
work well, particularly by comparison with the direct 
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analog of  one of  the most common syntheses used in 
crystal lography, 2 ~ - ~ o  (Fig. 2a). 

We have found that with real data these very high- 
order syntheses can be rather noisy, because of  the 
extreme re inforcement  of  the high-resolution contri- 
butions,  inc luding  noise, to the image. A simple 
empirical  approach  that has worked well in the case 
of TMV is to use moderate-order  values of  n, and not 
to vary them across the data set. This effectively 
weights down the high-reciprocal-space-radius con- 
tr ibution to the map. Fig. 2(c) is an example  of such 
a synthesis with n = 6 for the region of TMV shown 
in Fig. 2(a) .  Fig. 3 presents examples  of  such syn- 
theses for the Arg 112 region, over a range of  values 
for n. It is evident from Figs. 3(d) ,  (e) and ( f )  that, 
al though it is important  to choose a suitable value 
for n, the exact value is not critical. Even so, it is 
clear from Figs. 3(a) ,  (b) and (c) that the most 
common syntheses used in crystallography, with n = 
1, 2 and 3, are not generally suitable for fiber diffrac- 
tion. For a system with the symmetry of TMV at 2.9 ,~ 
resolution, where N = 8, a value for n of about 5 or 
6 seems to be very satisfactory. 

Omit maps 

Although the difference maps  described in the pre- 
vious section should prove satisfactory for most appli- 
cations, there are circumstances in which it is 
extremely desirable to minimize  any possible bias 
towards a model  structure. In recent years, 'omit  
maps '  have become popular  as a means  to this end. 
These maps  are calculated from observed structure- 
factor ampl i tudes  and calculated phases, but in the 
phase calculat ion the part of  the structure under  
scrutiny is omitted. In a series of  maps,  sections of  
the unit cell can be systematically omitted (Artymiuk 
& Blake, 1981). Alternatively, parts of  the model  
structure can be omitted;  for example,  Furey, Rob- 
bins, Clancy,  Winge, Wang & Stout (1986) omitted 
three pept ide residues at a time. A similar  approach 
was taken in a fiber diffraction study by Mandelkow,  
Stubbs & Warren (1981), who omitted electron 
density corresponding to amino acid side chains sus- 
pected of  changing conformat ion between two 
different forms of  TMV protein. In some cases they 
obtained definite results: omitted density returned, 
or included density disappeared.  In other cases, 
however, the noise level was too high to allow unam- 
biguous interpretat ions to be made. 

The size of the omitted structure has considerable  
bearing on the interpretabil i ty of  omit maps. This is 
part icularly so with fiber diffraction data, because the 
ratio of model  observations to diffracted data 
observations is much  higher  than in crystallography. 
For very small  omissions,  such as a single side chain,  
we have obta ined results s imilar  to those illustrated 
in Fig. 3, but  with larger omissions there is a sig- 

nificant loss of  interpretabil i ty.  Omiss ion of  ten of  
the 158 residues of TMV protein led to almost uninter- 
pretable maps;  the maps  from low-order syntheses 
such as 2 ~ - ~ o  are too weak for more than partial 

(a) 

(b) 

(c) 

Fig. 2. (a) A difference map at 2-9,~. resolution calculated from 
simulated TMV data, with residues 64 to 67 perturbed. The 
coefficients used were 2(g- ~3 o. This is directly analogous to one 
of the most common crystallographic syntheses, but is clearly 
not suited to fiber diffraction analysis in this case. (b) A map 
of the same part of the structure, in which the coefficient used 
for each data point was n~-(n-1)q3o, where n is twice the 
number of overlapping terms contributing to that point. This is 
the theoretically correct coefficient. The largest value of n used 
in this case was 16. (c) A map of the same part of the structure, 
using coefficients 6~J-5~o . This type of map is a convenient 
and accurate alternative to (a), and with real data is often less 
noisy than (a). Heavy lines: the TMV model used as the 'true' 
structure, to provide amplitudes. Light lines: the perturbed struc- 
ture, used to provide 'calculated' structure factors. 
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interpretation (Fig. 4a), while higher-order maps 
such as 6 ~3- 5 ~30 give the impression of a severe loss 
in resolution (Fig. 4b). It therefore appears that while 
omit maps can be of value to fiber diffractionists in 
answering questions about small regions of a 
molecule, they are not suitable for the systematic 
examination of complete structures. 

Hybrid maps 

The data discarded in an omit map may include 
sources of reliable information. Ideally one should 
not discard them, but include them at some reduced 
weight. Alternatively, the Fourier synthesis can 
include weights based on the agreement between 
calculated and observed structure factors (Sim, 1959; 

Blundell & Johnson, 1976), but such a weighting 
scheme has not yet been fully devised for fiber diffrac- 
tion (Namba & Stubbs, 1985). 

We have experimented with a variety of different 
coefficient combinations drawing on data calculated 
from both complete and partial structures. Useful 
maps have been obtained using Bessel order terms in 
(1) separated on the basis of complete structures, but 
with phases based on partial structures. [Such a dis- 
tinction is arbitrary, since all the real and imaginary 
parts of each G in (1) are mutually orthogonal, but 
it is computationally convenient.] The coefficients 
used in the Fourier-Bessel synthesis were {G'}, vec- 
tors with phases calculated from the partial structure 
and amplitudes G ' =  2 G " -  Gomit. Gomit is calculated 
from the partial structure and G" is obtained from 

(a) (d) 

r 

(e) 

\ 

(b) 

(c) 

) . . .  

( f )  

Fig. 3. High-order difference maps calculated from simulated TMV data, with the side chain of Arg 112 perturbed. Coefficients used 
were: (a) (g; (b) 2~3-~do; (c) 3~3-2~go; (d) 4~3-3(go; (e) 5~3-4~3o; (f) 6~d-5(go . The higher-order maps provide an accurate 
representation of the correct structure. Heavy lines: the TMV model used as the 'true' structure, to provide amplitudes. Light lines: 
the perturbed structure, used to provide 'calculated' structure factors. 
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m q 3 - ( m - 1 ) q 3 o ,  divided into Bessel order terms in 
the same ratio as ~d0. We describe such a coefficient 
(e.g. for m = 3) with the convention 

(4~t = [ 2 ( 3  ~ --  2 (d~0) --  (~omit ] O~omit. 

Figs. 4(c) and 5 present maps  calculated from these 
hybr id  coefficients. In Fig. 5 a range of  values of  m 

is used. The best results were obtained with m equal  
to 3; this map  is related to the high-order difference 
map in Fig. 3 with n = 6. Calculat ions such as these 
can be used for scanning an entire structure relatively 
quickly, since significant parts of  the model  structure 
can be left out of  each map;  thus some of  the advan- 
tages of both direct and omit difference syntheses are 
combined.  

Application to real data 

Determinat ion of  relatively large molecular  structures 
on the basis of  fiber diffraction data is becoming  

a 

(b) 

b 

(c) 

Figre4 d ' . ,  l;lmu ~ateed wTMV2 da t aqdw~ ih ~ a2 g _~ 7 pmr~ P rbal~ u~al~: dc f;~m 

where c4.~omit was  calculated from the TMV structure with residues 
61-70 omitted. Most of the omitted structure is not visible in 
the map. (b) 'Omit' map using the higher-order coefficients 
6~-5~omit. Although the omitted structure is now in density, 
there is very little detail present. (c) A map using Bessel order 
separations from the complete perturbed structure, and phases 
of G terms from the partial structure. Heavy lines: the TMV 
model used as the 'true' structure. Light lines: the perturbed 
structure. Coefficients used were (in the convention defined in 
the text) [2(3q3 - 2 % ) -  qdomit ]. This synthesis combines advan- 
tages of both direct and 'omit' difference maps. 

(c) 

Fig. 5. Hybrid difference maps calculated from simulated TMV 
data, with the side chain of Arg 112 perturbed. Bessel order 
separations were taken from the complete perturbed structure, 
and phases of G terms from the partial structure, omitting 
residues 111-120. Coefficients used were (in the convention 
defined in the text): (a) [ 2 ~ -  ~3omi,]; (b) [2(2~d- % ) -  %mi,]; 
(c) [2(3~3-2%mi,)]. Heavy lines: the TMV model used as the 
'true' structure. Light lines: the perturbed structure. The 
coefficients used in Fig. 5(c) are related to those of Fig. 3(f). 
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increasingly practical  ( N a m b a  & Stubbs, 1985, 1987), 
as is refinement of  such structures ( N a m b a  & Stubbs,  
1986; Stubbs,  N a m b a  & Makowski ,  1986). Calcula-  
tion of  difference maps  provides a valuable  extension 
to these methods ,  as well as a means  of  correction 
during the progress of  a refinement. Such maps  have 
almost  a lways been a necessary part  of  the crystallo- 
graphic  refinement of  protein structures. As par t  of  
the refinement strategy in determining the structure 
of  TMV at 2.9 A resolution, we have used the types 
of  maps  descr ibed here to determine the location of  
about  35 water  molecules associated with the viral 
coat protein subunit ,  a swe l l  as to correct the confor-  
mations of  a number  of  side chains. An example  is 
given in Fig. 6. 

Determina t ion  of  one structure makes  possible the 
rapid determinat ion of  related structures,  and  these 
methods  are being appl ied to closely related strains 
of  TMV, and  to TMV under  conditions where small 
conformat ional  changes in the coat protein are expec- 
ted. More  distantly related structures can be solved 
with limited numbers  of  heavy-a tom derivatives, at a 
considerable saving in time compared  with complete  
mul t i -dimensional  phase determinat ion ( N a m b a  & 
Stubbs, 1987), and  errors in such structures can easily 
be detected with difference methods.  Such a strategy 
would be appropr ia te ,  for example,  for cucumber  
green mottle mosaic  virus (Lobert ,  Hell, N a m b a  & 
Stubbs, 1986). 

Fibrous assemblies are made  up of  smaller  units, 
which in many  cases may be crystallizable. Actin 

Fig. 6. A difference map of TMV using real data at 2"9 ,~ resolution, 
with coefficients 6(g - 5 (go. The side chain ofArg 112 was omitted 
from the model data, in order to check its conformation. It 
returns clearly in the electron density map, with perhaps a small 
adjustment indicated. (The side chain here is different from that 
of the other figures; in those cases, which used simulated data, 
the perturbed structure was used as the 'true' structure.) Maps 
such as these have been used extensively as part of the refinement 
of the TMV structure. We thank Dr Rekha Pattanayek for this 
example. 

(Kabsch,  Mannherz  & Suck, 1985) and TMV coat  
protein (Bloomer,  Champness ,  Bricogne, Staden & 
Klug, 1978) are only two of  numerous  possible 
examples.  In such cases, a conformat ional  change in 
the macromolecule  is required in order  to change the 
form of  the assembly,  but  if  the crystal structure can 
be de termined it could provide a starting model  for 
the de terminat ion  of  the fiber structure. An approach  
combining crystal lography,  fiber diffraction with 
limited numbers  of  heavy-a tom derivatives, 
refinement of  a tomic coordinates  and difference 
Four ier-Bessel  syntheses is likely to play an impor tan t  
part  in fiber diffraction studies of  macromolecules  in 
the future.  

We thank  Sharon Lobert ,  Lee Makowski  and  
Rekha  Pa t tanayek  for valuable  discussions during the 
prepara t ion  of  this manuscr ipt .  This work was sup- 
por ted by N I H  grants GM33265 and BR02506. 
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